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The thermodynamics of site-random mean-field quantum spin 
systems 

N G Duffieldtl: and R KuhnP 
Universitat Heidelberg, Sonderforschungsbereich 123, Im Neuenheimer Feld 294, D-6900 
Heidelberg, Federal Republic of Germany 

Received 30 March 1989 

Abstract. We provide a general scheme for the treatment of the thermodynamics of 
mean-field site-random quantum spin systems, including systems where bond randomness 
is expressed as an underlying site randomness. We use the method to find the phase 
structure of a mean-field Heisenberg model in a random field, and of a mean-field 
Heisenberg spin glass model. 

1. Introduction 

Considerable interest has been devoted in recent years towards the study of randomly 
disordered spin systems, such as spin glasses [ l ] ,  dilute magnets [2], or systems in 
random fields [3]. While there are a number of rigorous results available (see e.g. [4]), 
exact solutions of disordered model systems are almost impossible to obtain if interac- 
tions are of short range and the dimension of the underlying lattice exceeds 1, the 
model of McCoy and Wu [5] being a notable exception. Some progress has, however, 
been made for systems with infinite-range interactions where the mean-field approxima- 
tion becomes exact [6-81. But even here, the true random bond problems have posed 
considerable difficulties, their solution requiring recourse to the n + 0 replica trick and 
sophisticated schemes of (hierarchical) replica symmetry breaking [9]. 

Fairly general methods of solution do, however, exist for random site models, 
including those where bond randomness is expressed in terms of an underlying site 
randomness [7-111. Models of this type have been proposed to describe the thermody- 
namics of spin glasses, but are currently also widely studied in the context of formal 
neural networks. 

It then seems natural to ask-though perhaps not with an eye on neural network 
models-whether solutions of similar generality can be obtained if one replaces classical 
spins by quantum spins. It is the purpose of the present paper to demonstrate that 
for general site-random Curie- Weiss models described by Hamiltonians of the form 

the answer is in the affirmative. Here 
ay=10 . . .  010a”010 . . . O I E ( @ * ) x N  
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4644 N G Dufield and R Kiihn 

where CT”: p = x, y, z is a Pauli spin matrix, i denotes the ith position in  the tensor 
product, and  is a collection {t,} of random vectors in Ry. We will obtain a variational 
expression for the free energy for such quadratic random Hamiltonians. However, the 
methods can be applied straightforwardly to any polynomial Hamiltonian of this 
random type. 

The basic ideas involved are most easily explained if the distribution of the 5, is 
discrete. In  that case, the Hamiltonian (1.1) only depends on the total spin operators 
over the sublattices (or subsets) of (1 , .  . . , N }  on which the values of the 5, coincide 
[ lo ,  111. To  deal with the quantum nature of the spins, two further ingredients are 
essential: the decomposition of total spin operators into a sum of irreducible spin 
operators, and  the bounding of quantum partition functions by classical partition 
functions using the Berezin-Lieb inequalities [ 12- 141. 

Any total spin operator S? = X,:, af can be decomposed into irreducible rep- 
resentations of SU(2):  

where J runs over the integers (half-integers) if N is even (odd),  JS”3A is a copy of 
’Sp, the representation of the p spin component in the (25 + 1 )-dimensional representa- 
tion of SU(2), and the c (  N ,  J )  are the multiplicities of the decomposition. It is found 
[15,16] that the c(  N, J )  have the asymptotic form 

c( N, J )  - exp(- N I (  r ) )  (1.3) 

where I is some smooth function of r = 2J /  N (see below). 
The Berezin-Lieb inequalities state, in particular, that for any operator ’H poly- 

nomial in the ’S” there exist functions (’H)” and ( ’ H ) ‘ ,  called the upper and lower 
symbols of JH, defined on the sphere S’, such that 

If we have a Hamiltonian of the form N times a polynomial in S k / N ,  and 
decompose it according to the irreducible representation of SU(2), then it is found 
[16] that the upper and lower symbols of ’H are of the asymptotic form 

Nh(r ,  4 4 ) + 0 ( 1 )  

for some function h. Combining (1.3) and (1.41 we see that 

and  so as N -+ 00 we expect (1.5) to be dominated by its largest contribution, which 
occurs when I +  h is at a minimum. These ideas are made rigorous in [16], by use of 
the theory of large deviations [17 ,  181. 

The Hamiltonians of the site-random models considered here depend not only on 
one, but on several total spin operators, one for each of the sublattices of constant 6. 
So an  extension of the above ideas to the multiple decomposition of several total spin 
operators is needed. This can be found in recent work of Duffield and Puli [ 19,201. 
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In the case of continuous probability distributions of the 6, the sublattice techniques 
cannot be applied immediately. However, approximating the continuous distributions 
by a sequence of discrete ones, we find that the corresponding sequence of free energies 
converges to the desired continuum quantity. In fact, if one considers only random 
variables taking valuzs in a compact set, then this approximation follows immediately 
from the results of [19]. However, we d o  not make this restriction. A corresponding 
proof for classical random-site models can be found in [ 111. 

The outline of the present paper is as follows. In 5 2 we consider the case of 
discrete random variables in a little more technical detail, and obtain a variational 
expression for the free energy. In  D 3 we extend the method to the case of continuously 
distributed random variables. To illustrate the working of our ideas, we solve the 
variational problem for two examples, a quantum X Y Z  model in a random field (in 
5 4),  and a quantum X Y Z  spin glass with randomly preferred interaction directions 
(in 0 5). We compare the behaviour of these quantum models with various classical 
analogues. 

2. Thermodynamic limit for discrete random variables 

We first treat the case where the underlying random variables have a discrete distribu- 
tion. We will provide a general treatment for quadratic random Hamiltonians which 
can then be applied to individual examples. We emphasise, however, that the 
results (and  their proofs) carry over for arbitrary polynomial site-random mean-field 
Hamiltonians. 

We define the random Hamiltonians as follows. Let r = ( R ) q  for some integer q, 
and let p be a discrete measure on r: 

m = l  

with 

m (  11 I 

o s p m s l  and c Pm = 1 
m = l  

for some integer m ( n )  where 6, is the Dirac measure with support 6. Let Q ,  be a 
function from r to R3, and let Q 2 :  r x r +  M ,  (the 3 x 3 matrices), obey 

Q J 6 ;  T I  = QAT,  5)* 
where * denotes Hermitian conjugation in M , .  Q1 and Q2 will couple to spin matrices 
in the Hamiltonian: accordingly, we label the their components by the indices x, y 
and 2. Let R = rxN, and  let P, denote the infinite product measure pSM on R. Our 
basic random variables will be the collections 8 = {6,},Eh E R, and we define the random 
Hamiltonian for system size N as 
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where up is a Pauli spin matrix and the index i denotes the ith position in the tensor 
product. 

Define the random free energy 

1 
i d P ,  5 )  = -- log tr exp(-Pfi". 

PN 

The following theorem states that this quantity is deterministic in the thermodynamic 
limit, and gives a variational expression for the limit. 

Theorem 1 .  P,-almost surely, I imN+=J, (P ,  5 )  = J ( P )  where 

SUP 
( r ,B ,& ~~c[0, l ]x [0 ,n~x[0,2a] i " " " '  

f ( P )  = - 

with 

m = l  !J 

where 

e"( 0,4) = sin e cos 4 
and 

e?'( 8, 4)  = sin 6 sin 4 e'( 8, 4 )  =cos 8 

n 

$ ( r ) =  pmz(rm) 
m = l  

where 

I (  r )  =;(I  + r )  log( 1 + r )  ++( 1 - r )  log( 1 - r ) - ~ o g  2 .  (2.3) 

Proof: Define the random sets 

n m ( N ,  5 )  = {i  E { 1 , 2 , .  . . , N } :  tr = tm} 
and define the total spin operators over these sets: 

1 
S W , 5 ) = 2  c a?. 

1 En, , ,  ( N.6  i 

Equation (2.1) can be rewritten as 
2 m ( n )  

"1 = -2 % ( N ,  5)Q?(5")- :  c c W Y ' ( 5 " ;  5 " ' ) S 5 ( N ,  5) .  
m = l  @ m,m'= l  &.p' 

(2.4) 

Now by the ergodic theorem (see e.g. [ 17]), pm( N, 5 )  = N - '  # Cl,( N, 5 )  converges to 
p m ,  P,-almost surely as N+m.  Furthermore, it is clear from (2.4) that IN@, 5 )  
depends on 5 only through the p m (  N, 5) .  With these observations, the stated result 
is a trivial modification of theorem 2 of [19] using the table in [13] (or rather, its 
corrected version in [16]). A sketch of the arguments involved is given in the 
introduction. 0 
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3. Continuous distributions 

Given a continuous measure p on r, we can approximate it (weakly) by a sequence 
of discrete measures. In this section we show that the corresponding approximation 
for free energies derived from the discrete measures by theorem 1 is good: the continuum 
free energies are just the limits of the discrete free energies. First we will need the 
following. 

Assumptions 
( a )  p is continuous and has a finite expectation. 
( b )  Piecewise, Ql is continuous (respectively Q2 is jointly continuous), and has 

elements which are absolutely integrable against p (respectively p O p ) .  
We will explicitly construct the discrete approximations to p. For positive x, let 

B(x)  c I' be the hypercube of side x, centred at the origin, with sides parallel to the 
coordinate axes. Define x ,  by 

1 
n p ( B ( x , ) )  = 1 - - .  

Note that 

where 141 = SUP 1 4 [ 4 ' ~ 1  (3.1) 

where the tt4'' are the q components of [ E  r. Since p has a finite expectation, the 
RHS of (3.1) goes to zero as n + a3 and so 

lim n - l x ,  = 0. 

".I I . \B(x, ,I  ISldp(6) I S - q ' S Y  

n - i r  

Divide B(x,) into n 4  disjoint hypercubes of side x , / n .  The hypercubes and T\B(x,) 
form a partition SL of r. We define the partititons 9, = A",=, Sk of r, and enumerate 
it as P, = {Bk:  m = 1,2 , .  . . , m ( n ) }  with Bk, , ,  = T\B(x,) .  Approximate the identity 
m a p o n r b y g ,  whereg,(x)=OforxEB", , , , ,  whi le i fxEBE9, \B" , , , then  

if p ( B ) = O  

Since x, is non-decreasing and the spacing n- lx ,  + 0, then clearly the step functions 
g,  converge pointwise to the identity function on the support of p in r. 

Our discrete measures are simply pn = p g , ' ,  i.e. those measures for which p , ( A )  = 
p ( g ; ' A )  for A a Bore1 subset of r. 

We define the discretised Hamiltonian as a function of the now continuous random 
variables 5 :  

Thus Hk is just an approximation to the Hamiltonian HN, the latter being obtained 
by replacing g, with the identity map in (3.3). 

Define the free energyfk(p, 6 )  = - ( P N ) - '  log tr exp(-pHk((S)). Since g,  is a step 
function, then applying theorem 1, we see that f " ( p )  = lim fk( p )  is given almost 
surely by an expression of the form (2.2) with pm = p ( B k )  and &,, = g , ( B k ) .  
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We shall write this in a slightly different way. Let A denote the elements ( r ,  8, 4 )  
of ~ ’ ( r , p ) ~ ~ ’ ( r , p ) ~ ~ ’ ( r , p )  for which O s  r ( x ) s  1 : O s  e ( x ) s 2 ~ ; 0 ~ 4 ( x ) s ~ :  

(3.4) 

This turns out to be the case. For the proof we will need the following lemma about 
continuity of the family Y,,. 

Lemma 3. Let m denote the triple ( r ,  8, 4 )  in .U. Then 

lim IY(m)  - Y,,( m)i = 0 
fl-x 

convergence being uniform in .I[. 
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for all m E A .  By assumption ( b ) ,  and the properties of g,, the integrands in (3 .7)  
converge pointwise to zero as n .+CO, except possibly on a set of measure zero. Now 
Jr dp (x ) !Qy(x ) /  and  JI..,. d p ( x j  dp(y)lQ;"(x, y j !  are finite by assumption ( b ) ;  and 
SI. dp(x)IQy(gn(x))I and  J ~ . ~ ~ . d p ( x )  dp(Y)IQ?@'(gn(x); gn(y ) ) l  are just Riemann Sums 
approximating them. Hence the integrals in (3 .7)  are bounded in n and we can use 
the dominated convergence theorem to conclude that their limit is zero. 0 

Next we show that the continuum limit of the discrete free energies f " ( P )  is given by 
the supremum of Y over A. 

Proposition 4. 

Proof: An is compact and  Y,  clearly continuous, and so there exists m, E A, such 
that f " ( P )  = --Y,,(m,,). Now 

f " ( P )  = - y ( f i n j  + ( Y ( m n  ) - y n ( f i p ) )  

2 f ( P  1 + (W fi" 1 - Yn ( f in 1). 
Thus by lemma 3, 

lim inf f " ( P )  z f ( P ) .  

If we can just show that f ( P )  3 lim 

that f ( P )  = -lima+r9'(m,). Clearly U, 
a sequence {ma,n}  with each ma,n in A" such that limn,xme,n = m,. Now 

n - r  

f " ( P )  then we are done. 
By definition of the supremum, there exist elements { m ,  : (Y = 1,2,. . . } of A such 

is dense in Ju so for each m, we can find 

-y(ma,n)  = - 9 ' n ( m q n ) +  ( y n ( m a , n )  -Y(m,,,,)) 
z f n  ( P  ) + (9, (ma,,, )-Y( ma,,, 1) 

so taking lim sup,,, and  then lim,,,, 

f ( P )  3 lim sup  f " ( P )  
n - r  

as required. 0 

It just remains to show that the approximation of the finite volume free energy by its 
discrete versions is exact in the thermodynamic limit. 

Proof of theorem 2. By Bogolubov's inequality 

Let us examine the R H S  of (3.8) first. Let P N ( 5 ; .  ) be the empirical measure 
N - '  ZL, S , (  . ) on r, i.e. the distribution of the first N elements of a given g. Then 
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By the ergodic theorem 

weak lim PN ( 5 )  = p. (3.10) 
N - a c  

P,-almost surely, so since the integrands in (3.9) are piecewise continuous and p 
continuous we can take the limit as N+oo and replace PN(&) with p in the RHS of 
(3.9). Then taking the limit n + 00 we get zero, as in proposition 4. To summarise 

lim lim R h ( S )  = 0 P,,-almost surely. 
n - x  N - s  

BY (3.8) 

f X P ,  5 )  - R X S )  S f N ( P ,  5 )  S f X P ,  5) + RnN(5). 

Now for any 5 for which (3.10) is obeyed, then clearly 

weak limPN(g)g; '=p,,  
N4-Z 

and we can apply theorem 1 to the second inequality of (3.11): 

and so 

lim SUP fN(P, 5) < f ( P )  P,-almost surely. 
N - x  

Similarly we conclude from the lower bound for f , ( P ,  6) that 

lim inf fN(P,  5 )  s f (P )  P,- a1 mo s t surely 
N - U  

and this completes the proof. 

(3.1 1) 

0 

In the case of a discrete probability distribution, the supremum in theorem 1 is trivially 
attained. For continuous distributions this is not immediately clear, so we prove the 
following. 

Proposition 5. S U ~ , , , , , ~  Y ( m )  is attained. 

ProoJ: By definition there exists a sequence m, in A such that lim,-.acY(m,)= 
sup,,,Y(m). Let 2 denote the set of functions from r to the unit ball B, of R3. We 
can identify A with the p-measurable functions on 2, The topology of pointwise 
convergence in is just the product topology on (I?,)"., which is compact by 
Tychonoff's theorem (see e.g. [21]). Thus, some subsequence of the m, converges 
pointwise to some 6 in Since p has an expectation and the m, are bounded, then 
by the dominated convergence theorem, 6 lies in A. It is also clear, by use of the 
dominated convergence theorem, that Y is continuous in the topology of pointwise 
convergence in A. Hence 

lim 9'( m,)  = 9'( 6) 
I I -X 

along the subsequence, and the supremum is obtained. 0 
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4. The mean-field Heisenberg random-field model 

We first analyse the thermodynamics of a model with a discrete probability distribution. 
Let 

N l N  
I = ,  2 N  i , j = ~  

- H N ( g ) = h  1 [iaf+- a,*uj 

where each takes the values * 1  with probability i, and h 3 0. Thus in the terminology 
of 0 2, r = R, p =is-, +is,, Q?([ )  = h [ S p z  and Q f p  (8, 7) = SF” ’ .  For this model, 
theorem 1 yields that the negative free energy - f (P,  h )  is the supremum ofthe functional 

Y(rl, r2r 01. e21419 42) 

where we have made the change 02+ 7~ - 8, in the variables of (2.2). 

Proposition 6. Let P h  = h-l tanh-’ h when h < 1 and +m otherwise, and for P 3 P h  let 
rp be the positive solution of r = tanh(pr) .  Then for p s P h ,  

1 f ( P ,  h )  = --l0g(2 cosh(Ph)) 
P 

while for P 3 P h  

1 

a f ( P ,  h ) = ~ ( r ~ - h 2 ) - - l o g ( 2  cosh(prp)). 

ProoJ: Clearly, the 
equations for the remaining variables are 

supremum occurs when cos(+, - 4,) = 1. The Euler-Lagrange 

1 
h cos el + i ( r ,  - r, cos(8, + e,)) -- I ’ ( r l )  = O  

h cos e,+:( r, - rl cos( e, + e,)) -- ~ ’ ( r , )  = o 

( R I )  

(R2) 

P 

P 
1 

(81) 

(62) 

rl rl r2 

2 4 

r2 rl r2 

2 4 

-h -  sin 8,  +- sin(@, + e,) = 0 

-h - sin e,+- sin( e, + e,) = 0. 

If rl = rz = 0 then Y = P - ’  log 2. If r ,  = 0, r2 f 0 (the case r, = 0, rl # 0 is identical) then 
from (4.1) we see that for a supremum cos 8, = 1; ( R l )  dictates that 2h = r, and 
(R2) leads to a value -h2/2+(2P)-’log(2cosh2ph) of 9’. This is less than 
p - ’ log (2coshph) ,  a value for Y which, as we shall see, is attained elsewhere. We 
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now comment that since Z'( r )  -, Cc as r -, 1, the upper boundaries rl , r2 = 1 can never 
be maximisers. Hence stationary values of Y with r , ,  r2E (0, 1)  are, provided they 
exceed the values already identified, the only candidates for suprema. 

It remains to consider r , ,  r 2 f  0. ( 6 1 )  and (62)  yield 

(4.2) 
r, rl 

2 2 
h sin 82 = - sin( 6, + &I.  h sin 0,  = sin( 8, + 8,) 

Thus sin e , ,  sin e2 and  sin( 6, + 8,) are either all non-zero or all zero. In the former 
case, elimination of 61, yields that r , ,  r, = rp. Clearly this requires P > 1. In fact, 
from ( e l )  and (82)  we see that 6 ,  = 6? so that h = rp cos 6 , .  Thus for this solution 
to exist we require that r p >  h, or equivalently, P >  Ph.  Writing I ( r )  = 
r tanh-' r - log(2 cosh tanh- '  r ) ,  we find that the corresponding value of Y for this 
low-temperature solution is 

(4.3) 

We now examine the case sin 6 ,  = sin 6. = sin( 8, + 0 2 )  = 0. cos 01 ,  cos O2 take the 
values i l  and cos( 0,  + 8,) = cos 8, cos &. Clearly 

N r I ,  r2,0,0,  4, 4 )  3 Y(r1, r2, x ,  n, 4,4)  
so we need only consider the two cases cos 6 ,  =cos  O2 = 1 and cos 6 ,  = -cos 0 2 =  1. 
The Euler-Lagrange equations become 

(RI* )  

(R2*) 

We shall see that in general there exist symmetric ( r, = r2) and non-symmetric ( r, f rz) 
solutions of (R1*) and (R2*). However, there is never any exchange of stability between 
them, for the non-symmetric solution is always unstable WRT angular variations. 
Specifically, with cos el,, = *1 the Hessian matrix for the problem is block diagonal 
(i.e. the radial-angular blocks are zero) with angular block: 

( cos 6 ,  cos 02( r l r2 /4)  

A necessary condition for stability is that the determinant 
> .  

-h cos 6 , ( r , / 2 ) + c o s  6, cos O2(rIrZ/4) cos 8, cos e,( r ,  rJ4) 
- h  cos &( r2 /2 )+cos  O 1  cos 02( r l r2 /4)  

(4.4) 

is positive. First we consider cos Or=cos 1. We note immediately that there is 
only one symmetric solution of ( R l * )  and (R2*), namely r ,  = r 2 =  tanh(j3h). For this 
high-temperature solution Y takes the value P - '  log(2 cosh(ph)) .  By adding r, to 
(R2*) and  rz to ( R l * )  we see that 

rl r2 
8 

D = h cos 6 ,  cos B2 - ( 2 h  - ( r ,  COS 6 ,  + rz cos e?)) 

1 1 
~ ( r , + r 2 ) - h = r l - - t a n h ~ 1  r , = r r - - t a n h - '  r2. (4.5) 

P P 
When P < 1, r-, r - P - '  tanh-' r is strictly monotonic, and  hence r, and r2 are equal, 
and  so equal to tanh ph. If P > 1 then we have the possibility that solutions of (RI"), 
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( R 2 * )  exist with rl  and r2 distinct. By considering the graph of the function I+ 

r - p- ’  tanh-’ r, we see that this can only occur if r l  - P - ’  tanh-’ rl  and r2 - P - ’  tanh-‘ rz 
are positive and so, by (4.5),2h - ( r l  + rz) is negative. But this contradicts the positivity 
of D. Furthermore, we see that when P > P h ,  h- t anh(ph)  is negative and so the 
solution r l ,2  = t anh(ph)  is unstable. When cos 0’ = -cos O2 = 1, then in a similar manner 
to the previous case 

1 1 

P P 
( rI  - r2) /2  - h = r l  -- tanh-.’ r l  = - tanh..’ r2 - r 2 .  (4.6) 

Hence for P < 1, ( R l * )  and (R2*) have no solution. For /3 > 1 observe that for stability 
the determinant requires that 

2h - ( r ,  - r z )  < 0. (4.7) 

Considering again the graph of r + r - P - ‘  tanh-’ r we see that r l  < rp < r 2 .  Substituting 
in (4.7) we get h < 0, a contradiction. Thus, to conclude, r l , ?  = t anh(Ph)  is the maximiser 

0 for j3 P h ,  while r1 ,2  = rp is the maximiser for ,6 > P h .  

Proposition 6 shows that the free energy is continuous across a second-order phase 
transition at the critical temperature P = PI,. Indeed the techniques of theorem 1 can 
be extended to calculate the gradients of the free energy (see [19]): we may also 
calculate expectation values. The thermodynamic limit of the magnetisation density 
N-’((S”,)’+(S’,)’)’’’  orthogonal to the z direction is given by the expression 
( r l  sin 8’ + r2 sin 1 3 , ) / 2 ,  evaluated at the maximiser of 9. For p approaching p,, from 
above this turns out to be of the form a ( P  -Ph)’” (for some constant a )  while it is 
zero for /3 < PAr thus demonstrating the expected square-root singularity. 

Finally, we note that using the methods of this paper we can show that the Ising 
model with transverse random field has the same phase diagram as the present model. 
However, we contrast with the classical Ising model with random field [22]: in this 
latter model there is a line of Jirst-order transitions in the phase diagram. We will 
return to this point in the conclusion. The phase diagrams of the various models are 
given in figures 1 and  2. Here T,, = 0;’. 

1 2 1  

F M  

0 0 2  0 4  0 6  0 8  1 0  1 2  

Figure 1. Phase diagram for the quantum random field Heisenberg model of 5 4. PM and 
FM denote the paramagnetic and ferromagnetic phases respectively. The phase boundary 
is second order. 
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0'75\m First 

h 1  
FM 

0 . 2 5 -  

0 ' 0 2 0 '4  0'6 0'8 1'0 ' 2 

Figure 2. Phase diagram for the classical random field Ising model of [22]. As in figure 
1, PM and FM denote the paramagnetic and ferromagnetic phases. 

5. A mean-field Heisenberg spin glass with random directions 

Our second application of the general theory is the random spin direction model and 
uses the continuum distribution theory of § 3. To each site we attach two random unit 
vectors in R3 whose directions are independent and uniformly distributed. By contrac- 
tion with the vector of spin components, each vector determines a spin operator. The 
Hamiltonian is a sum of products of these overall pairs of sites, and can be viewed as 
a possible quantum generalisation of van Hemmen's classical spin-glass model [7]. 

In the notation of 0 3, r =  (R3),, and p is the uniform distribution over F =  
S3  x S 3 c  I'. Thus setting p = v 0  v where U is the uniform distribution on S 3 ,  we set 
Q lqO.  We write each X E F  as a pair of unit vectors ( n , ( x ) ,  n , ( x ) )  and define 
QZ:r+M3 by 

QY'(x,  Y )  = ( n ~ ( x ) n ~ ' ( y ) + n : ( x ) n ~ ' ( y ) ) .  
Thus, writing the vector e(e(x) ,  +(x))  as W x ) ,  theorem 2 yields that 

f ( P ) = -  sup 
r E d , f l e F  { 

where 3 is the space of p-measurable functions taking values in [0,1], 0 is the space 
of p-measurable functions on taking values in S3, 

(5.1) 
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where o ( x )  = n , ( x )  * n , ( x )  and cy = O  if ,L3 6 l/c”(O) = 1, while if  ,L3 7 l/c”(O) then cy 

is the unique positive solution of 

cy = ~fdp(x)( l+w(x))1’2c‘(up(l+w(x)) l : ’ )  (5.3) 

and 

c ( Y ) =  SUP { x y - I ( ~ ) } = l o g ( 2 c o ~ h y )  
xato , l l  

is the Legendre transform of I .  

Proof: 
Angular supremum. We show that supnee X (  r, fl) is attained when 

for w ( x )  # -1, with n ( x )  arbitrary on the p-measure zero set for which w ( x )  = -1. 
The supremum is attained, and since 0 has no boundary and %’( r, * ) is continuous, 

the supremum is attained at a stationary point of X(r, . ). Let U be an L”(p) function 
on from to R3  and for fl E 0, t E R  define the perturbation a, of by 

( 5 . 5 )  

The range of u ( x )  + ~ ( x )  - ( ~ ( x )  n ( x ) ) n ( x )  is simply the subspace of R3 orthogonal 
to n ( x ) ,  so for stationairty O ( x )  must be parallel to J 2 n l ( x )  + J , n 2 ( x )  for all x in 
supp r. We restrict J ,  and J ,  to be both either positive or negative, since otherwise 
%’( r, n) = J ,  J2 s 0. Writing 

J z n i ( x )  + J i R z ( x )  n ( x )  = 
( J : +  J : +  2 J , J 2 w ( x ) ) ” 2  (5.7) 

when the latter is defined (with n ( x )  arbitrary on the set of p-measure zero where it 
is not) and inserting into (5.6): 

J , = J , L + J , K  and J2 = J2L+ JI K ( 5 . 8 )  

where 

4 x 1  K = dp(x) 
( J : +  J : + ~ J , J , W ( X ) ) ” ~  
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Clearly, K ,  and hence 1 - L, is non-zero, so from ( 5 . 8 ) ,  J :  = J : .  Hence J ,  = J ,  and 
X ( r ,  0) is positive. Substituting in (5.1), J ,  and J z  drop  out, yielding 
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1 
X( r, C l )  - - 9( r )  = 9( r )  = d p ( x ) r (  x ) (  1 + ~ ( x ) ) ” ~  

P 
Radial supremum. We will find the stationary points of 9 and eliminate the possibility 
of non-stationary suprema on the boundaries r ( x )  = 0 , l .  For f~ Y“(?, p )  

d 
- 9 ( r  + tf) 1 
d t  I =o  

Already we see that since 1‘( r )  = tanh-’( r ) ,  1’( r )  + c ~ ,  as r + 1 so that the supremum 
r* must be bounded away from 1. ( A  rigorous justification of this argument is provided 
in [19]). For the lower boundary, let B = { x :  r * ( x )  = 0) and choosef=  xe.  Then since 
I ’ (0 )  = 0, 

le d p ( x ) ( l + w ( x ) ) ’  ’ IB, d p ( y ) r * ( y ) ( l + w ( y ) ) ” 2 ~ 0  

so that p(  B )  is 0 or 1 for r* to be a maximiser. Note at this point that I‘ = (c’)-‘ the 
condition on I can be reexpressed as 

c’(00) = 1 c’(0) = 0. (5 .9)  

(For general properties of the Legendre transform see [23].) 

derivatives: 
The local stability of the stationary point r* = 0 is obtained from the second 

Let A be the integral operator with kernel A(x, y )  = (1 + w ( x ) ) ” ’ (  1 + w ( y ) ) ’ / ’  and note 
that 

1 -- 1 
I“ (0 )  = 

c”((c’)-’(o)) - c”(0)‘  

Then 

r = o  

It is easily shown that IlAll = 1, so that r* = O  is stable if P < (c”(0) ) - ’ .  Conversely, 
t ak ingf (x)  = (1 + W ( X ) ) ” ~  we see that r* = 0 is unstable if P > (c“(O))-’. We now show 
that in the latter case there exists only one other stationary point, which is hence the 
maximiser. In the former case, there is no other stationary point, so r*=O is the 
maximiser. 
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Letting a = J j  d p ( x ) r * ( x ) ( l  + w ( x ) ) " *  then the condition for ( d / d t ) g ( r * +  tf)l,=o 
to be  zero for arbitrary f is that 

O = F ( a ) = c r -  d p ( x ) ( l + w ( x ) ) '  ' c ' ( a p ( l + w ( x ) ) '  '). (5.10) i: 
1 

Clearly a = O  is a solution of (5.10). Now, 

F ' (  CY ) = 1 - p d p (  ?I)( 1 + W (  x ) ) c " (  aj3 ( 1 + w ( x ) ) '  '). 

Since c"(x) = sech'( x )  is decreasing, a -+ F'(  a )  is strictly increasing. Thus F (  a )  = 0 
will have a unique strictly positive solution if and only if O >  F ' ( O )  = 1 -pc " (O) ,  as 

U 

Comparison with a classical model. We emphasise that the result obtained is not just 
the free energy of the corresponding model of classical Heisenberg spins. However, 
the thermodynamics are similar, although the details are different. 

required. The explicit form ( 5 . 2 )  follows straightforwardly. 

Let s, : i = 1 , .  . . , N in S 3  and define the random classical Hamiltonian 
l . r  

with Qz and  6 as before. Then one sees easily from [ 111 that the free energy is almost 
surely given by an  expression of the form (5.1), but with I replaced by I,,, the rate 
function occurring for the large deviation principle for the distribution of the com- 
ponents of classical spins: I,, is the Legendre transform of c,,, the cumulant generating 
functional for a component of the sum of independent identically distributed spins on 
the sphere: 

One easily verifies conditions (5.9) for cCI. Furthermore c:l is decreasing and c,",(O) = f .  
Thus proposition 7 carries over using c,, instead of c, and the critical temperature is f .  

6. Conclusions 

We have provided a method to treat the thermodynamics of site-random quantum 
mean-field systems. The methods have enabled us to find the phase structure in some 
models. In  8 5, we saw that the results for the quantum spin glass were qualitatively 
the same as those for the corresponding classical Heisenberg model. In  fact, the same 
statement can be made for the random-field model of § 4: one needs only to replace 
the function c by c,, throughout. We noted in Q 4 that the phase diagram of the classical 
Ising random-field model is qualitatively different: this latter model has a line of 
first-order transitions. We therefore conclude that the first-order transition does not 
appear in the quantum and classical Heisenberg random-field models because of the 
extra degrees of freedom in these models: these relieve the frustration present in the 
classical Ising random-field model. The relief' is not per se a quantum phenomenon. 

In  outlook we reiterate that ou r  methods can be used to examine the thermodynamics 
of arbitrary quantum mean-field random-site models with finitely many random vari- 
ables per site. As in the classical case [ 113, the methods also carry over to any multispin 
(i.e. polynomial) interaction. 
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